Memory Capacity of Linear vs. Nonlinear Models of Dendritic Integration

نویسندگان

  • Panayiota Poirazi
  • Bartlett W. Mel
چکیده

Previous biophysical modeling work showed that nonlinear interactions among nearby synapses located on active dendritic trees can provide a large boost in the memory capacity of a cell (Mel, 1992a, 1992b). The aim of our present work is to quantify this boost by estimating the capacity of (1) a neuron model with passive dendritic integration where inputs are combined linearly across the entire cell followed by a single global threshold, and (2) an active dendrite model in which a threshold is applied separately to the output of each branch, and the branch subtotals are combined linearly. We focus here on the limiting case of binary-valued synaptic weights, and derive expressions which measure model capacity by estimating the number of distinct input-output functions available to both neuron types. We show that (1) the application of a fixed nonlinearity to each dendritic compartment substantially increases the model's flexibility, (2) for a neuron of realistic size, the capacity of the nonlinear cell can exceed that of the same-sized linear cell by more than an order of magnitude, and (3) the largest capacity boost occurs for cells with a relatively large number of dendritic subunits of relatively small size. We validated the analysis by empirically measuring memory capacity with randomized two-class classification problems, where a stochastic delta rule was used to train both linear and nonlinear models. We found that large capacity boosts predicted for the nonlinear dendritic model were readily achieved in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of different inverse methods for combination of vS and vGPR data to estimate porosity and water saturation

Inverse problem is one of the most important problems in geophysics as model parameters can be estimated from the measured data directly using inverse techniques. In this paper, applying different inverse methods on integration of S-wave and GPR velocities are investigated for estimation of porosity and water saturation. A combination of linear and nonlinear inverse problems are solved. Linear ...

متن کامل

Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue

We consider the combined effects of active dendrites and structural plasticity on the storage capacity of neural tissue. We compare capacity for two different modes of dendritic integration: (1) linear, where synaptic inputs are summed across the entire dendritic arbor, and (2) nonlinear, where each dendritic compartment functions as a separately thresholded neuron-like summing unit. We calcula...

متن کامل

Evaluation of the effect of dendritic branching on signal processing in hippocampus pyramidal cells

Since branching region of an active nerve fiber is an abrupt widening of the structure, two concepts emerge: first, the stimulating current must be sufficient to raise the outgrowing fibers above the thresh¬old, and secondly, the stimulating current will be divided in proportion to the characteristic admittance of the branches. On the other hand, blocking of the nerve impulse in this region is ...

متن کامل

Evaluation of the effect of dendritic branching on signal processing in hippocampus pyramidal cells

Since branching region of an active nerve fiber is an abrupt widening of the structure, two concepts emerge: first, the stimulating current must be sufficient to raise the outgrowing fibers above the thresh¬old, and secondly, the stimulating current will be divided in proportion to the characteristic admittance of the branches. On the other hand, blocking of the nerve impulse in this region is ...

متن کامل

Nonlinear Numerical Integration Scheme in Strain Space Plasticity

Strains are applied to the integration procedure in nonlinear increments todecrease the errors arising from the linearization of plastic equations. Two deformationvectors are used to achieve this. The first vector is based on the deformations obtained bythe first iteration of the equilibrium step, and the second is acquired from the sum of thesucceeding iterations. By applying these vectors and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999